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Abstract. In recent decades, the Arctic sea ice has been declining at a rapid pace as the Arctic is warmed 10 

at a rate of twice the global average. The underlying physical mechanisms for the Arctic warming and 

accelerated sea ice retreat are not fully understood. In this study, we apply a relatively novel statistical 

method called Self-Organizing Maps (SOM) to examine the trend and variability of autumn Arctic sea 

ice in the past four decades and their relationships to large-scale atmospheric circulation changes. Our 

results show a large portion of the autumn Arctic sea ice decline between 1979 and 2016 may be 15 

associated with anomalous autumn Arctic intrinsic atmospheric modes. The Arctic atmospheric 

circulation anomalies associated with anomalous sea surface temperature patterns over the North Pacific 

and North Atlantic influence Arctic sea ice primarily through anomalous temperature and water vapor 

advection and associated radiative feedback.  

1 Introduction 20 

In recent decades, the Arctic sea ice has been decreasing at an unprecedented rate (Rothrock et al., 1999; 

Parkinson, 2014). The accelerated retreat in Arctic sea ice exerts a significant impact not only on the 

marine and terrestrial ecological systems of the Arctic (Post et al., 2013), but also on the environment of 

the mid latitude (Mori et al., 2014; Kug et al., 2015).  

The underlying mechanisms for the Arctic sea ice decline remain a subject of active research. Studies 25 

have suggested that both anthropogenic forcing due to greenhouse gas and aerosol emissions (Min et al., 

2008; Notz and Marotzke, 2012; Gagné et al., 2015) and natural mechanisms at a wide range of scales 

contribute to the observed Arctic sea ice decline. Local processes, including surface thermal inversion 

(Bintanja et al., 2011), atmospheric lapse-rate (Pithan and Mauritsen, 2014), ice-albedo feedback 

(Flanner et al., 2011) and water vapour and cloud radiative feedback (Sedlar et al., 2011), have been 30 

found to affect Arctic sea ice. On the other end, global sea-surface temperature (SST) and pressure 

oscillations, such as the Arctic Dipole (AD) (Wang et al., 2009), the Atlantic Multidecadal Oscillation 

(AMO) (Park and Latif, 2009), the Arctic Oscillation (AO) (Rigor et al., 2002; Deser and Teng, 2008), 

the North Atlantic Oscillation (NAO) (Koenigk et al., 2009), and the Pacific Decadal Oscillation (PDO) 

(Ding et al., 2014), have also been linked to the Arctic sea ice variations and the recent declining trend. 35 

Understanding the relative contributions from these multi-scale natural processes to Arctic sea ice 

decline is vital not only for forecasting sea ice conditions but also for projecting climate change and its 

impact on the Arctic environment and beyond (Stroeve et al., 2007; Day et al., 2012; Swart et al., 2015; 
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Ding et al., 2017). 

In this study, we examine the contributions of changes in large-scale atmosphere and ocean circulations 40 

to the trends in Arctic sea ice by applying the Self Organizing Maps (SOM) method (Kohonen, 2001). A 

relatively new neural network-based method, SOM is superior to some other feature-extracting or 

clustering methods in that it describes the continuum of atmospheric and oceanic states with a 

manageable number of representative patterns, as compared to only providing useful information on 

aggregate patterns by Empirical Orthogonal Function (EOF) and other similar methods. Over the past 45 

decade, SOM has been widely used in atmosphere and ocean sciences (Hewitson and Crane, 2002; 

Leloup et al., 2007; Johnson et al., 2008; Lee et al., 2011; Chu et al., 2012). For example, SOM was used 

to explain the eastward shift of the North Atlantic Oscillation (NAO) since the late 1970s (Johnson et al., 

2008). The SOM approach was also used to examine the contributions of different ENSO flavours to the 

SST trend in the tropical Pacific Ocean (Johnson, 2013).  50 

We apply SOM to a monthly sea ice concentration dataset for the period 1979 - 2016. We will show how 

much of the recent declining trend in the Arctic sea ice concentrations may be associated with the low 

frequency atmospheric circulation modes related to SST anomalies over the Pacific and Atlantic Oceans. 

Although the analyses have been carried out for all four seasons, we will show the results for autumn 

only since Arctic sea ice reduction in autumn has strongest influence on the wintertime atmospheric 55 

circulations over Eurasia and North America (Francis et al., 2009; Petoukhov and Semenov, 2010; 

Peings and Magnusdottir, 2014).  

2 Dataset and Methods 

For the sea ice analysis, we utilized National Snow and Ice Data Center (NSIDC) monthly sea ice 

concentration dataset that has a horizontal grid of 25 km × 25 km on a polar stereographic projection for 60 

the period October 1978 - present (http://nsidc.org/data/NSIDC-0051). For the atmospheric circulation 

analysis, we extracted atmospheric variables from the ERA-Interim reanalysis (Dee et al., 2011) that 

covers the period 1979-2016 with a horizontal grid spacing of 1.5° latitude by 1.5° longitude, and 

obtained SST data from the Hadley Center Sea Ice and Sea Surface Temperature dataset (HadISST) 

(Rayner et al., 2003) (http://www.metoffice.gov.uk/hadobs/hadisst/) that is on a 1° latitude by 1° 65 

longitude grid for the period 1870 - 2016. 

The SOM technique is utilized to extract patterns of Arctic sea ice concentrations. As a neural 
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network-based method, SOM uses unsupervised learning to determine generalized patterns in complex 

data. The technique can reduce multidimensional data into two-dimensional array consisting of a matrix 

of nodes. Each node in the array has a reference vector that displays a spatial pattern of the input data. All 70 

patterns in the two-dimensional array represent the full continuum of states in the input data. The SOM 

algorithm also is a clustering technique, but unlike other clustering techniques, it does not need a priori 

decisions on data distribution. Unlike the EOF analysis, the SOM technique does not require the 

orthogonality of two spatial patterns. A detailed description of the SOM algorithm is given in Kohonen 

(2001).  75 

In this study, the SOM technique was used to categorize anomalous seasonal sea ice concentration 

patterns north of 50°N for autumn (September-October-November). The autumn seasonal anomalies are 

calculated by subtracting the climatology, which is the overall mean for all 38 autumns in the study 

period 1979-2016, from the autumn mean for each year. The anomalous sea ice pattern for each autumn 

is assigned to the best-matching SOM pattern on the basis of minimum Euclidean distance. Pattern 80 

correlations between anomalous sea ice field for each autumn and its corresponding best-matching SOM 

pattern are used to determine the number of SOM nodes or grids (Lee and Feldstein, 2013). We calculate 

spatial correlation coefficients for different number of SOM grids ranging from 2×2 to 4×5 (Table 1). 

There is a large increase in correlation from 2×4 to 3×3 and thus the 3×3 SOM grid is chosen for the 

analysis. Smaller grids may not adequately capture the variability of autumn Arctic sea ice, whereas 85 

larger grids, although providing more details, do not alter the results and conclusions. The contribution of 

each SOM pattern to trends in Arctic sea ice concentration is calculated by the product of each SOM 

pattern and its frequency trend (Johnson, 2013), where frequency is calculated by the number of the 

occurrences of each SOM pattern divided by the total number of autumns over the study period (38) and 

the trend of the frequency time series for each SOM pattern is determined through linear regression. The 90 

sum of the contributions from all SOM patterns represents the trends in Arctic sea ice explained by the 

SOM patterns, which in this case indicates trends resulting from low-frequency variability. The 

significance of the trends in the time series for each SOM pattern is tested using the Student’s t-test. 

Residual trends are calculated by subtracting SOM-explained trends from the total trends.  
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3 SOM results 95 

Sea ice concentration anomalies occur mainly in the marginal seas from the Barents Sea to the Beaufort 

Sea, with maximum anomalies in the Barents Sea and the Kara Sea, and over the Beaufort Sea and the 

East Siberian Sea. Nodes 1, 2 and 4 depict all negative anomalies, whereas Nodes 5, 6, 8 and 9 exhibit all 

positive anomalies. Nodes 3 and 7, on the other hand, show a mixed pattern with opposite changes in the 

Barents Sea in the Atlantic sector of the Arctic Ocean and the Beaufort Sea and East Siberian Sea over 100 

the Pacific sector. The largest change with similar strength over the Pacific and the Atlantic sectors are 

depicted by Nodes 1 and 9, and both nodes also have the highest (24%) frequency of occurrences. The 

other nodes that are either all positive or all negative exhibit larger spatial variability in the strengths of 

the signals with much stronger signal in either the Atlantic sector (Nodes 2, 5 and 8) or the Pacific sector 

(Nodes 4 and 6). The two mixed patterns show similar strength over the two sectors, but the pattern with 105 

positive anomalies over the Beaufort Sea and the East Siberian Sea and negative anomalies over the 

Barents Sea, as depicted by Node 3, occurs much more frequently (13%) than the opposite pattern 

represented by Node 7 (8%).  

We examine trends in the frequency of occurrence for each SOM pattern and their contribution to trends 

in the Arctic autumn sea ice concentration. Figure 2 shows the occurrence time series for each SOM 110 

pattern. The nodes with spatially uniform changes appear to be separated into two clusters with those 

showing all positive anomalies (Nodes 5, 6, 8 and 9) appearing in the 80s and 90s and those having all 

negative anomalies (Nodes 1 and 4) appearing after 2000. The transition from all positive anomalies in 

the earlier part, to all negative anomalies in the later part, of the time series is consistent with the trends in 

the observed Arctic sea ice concentration during the same time period. Not surprisingly, the transition 115 

appears to be dominated by the two strongest and most frequent patterns denoted by Node 9 (all positive 

and occurring from the 1980s through mid 1990s) and Node 1 (all negative and occurring exclusively 

after 2005). Only these two nodes have linear trends that are statistically significant at above 95% 

confidence level. The slopes of the trend lines for these two nodes are opposite but the values are similar 

(0.027 yr-1 for Node 1 and -0.021 yr-1 for Node 9). The other nodes have statistically insignificant trends 120 

with magnitudes less than 0.01 yr-1. 

The spatial patterns of the trends in anomalous autumn sea ice concentration explained by each node and 

by all nodes are shown in Figs. 3 and 4. Together, the nine SOM nodes explain about 60% of total trends 
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in the autumn sea ice loss (Fig. 4b). Among them Node 1 explains the largest portion (33%) of the total 

trend, followed by Node 9 (21%), with the other 7 nodes together accounting for only 6% of the loss.  125 

4 Potential Mechanisms 

To explain the spatial patterns depicted by the two dominant nodes, we made composite maps over the 

years of occurrences for Nodes 1 and 9, respectively, and Figs. 5-7 show composite patterns of the 

anomalous SST and anomalous atmospheric circulations represented by the 500-hPa geopotential height, 

850-hPa wind, surface to 750-hPa specific humidity, surface downward longwave radiation, and surface 130 

air temperature. For Node 1, the SST composite pattern resembles negative phase of the PDO in the 

North Pacific and positive phase of the AMO in the North Atlantic (Fig. 5). The positive SST anomalies 

over the mid-latitude North Pacific produce local negative upper-tropospheric vorticity anomalies 

(Hoskins and Karoly, 1981) which excite a wave train with zonal wave number two that propagates 

eastward to North America, North Atlantic, and Eurasian Continent (Fig. 5). Over the Arctic, the pattern 135 

resembles negative phase AD, with a center of negative 500-hPa height anomalies over Greenland and 

the Baffin Bay, and a center of positive anomalies over the Kara Sea. The zonal pressure gradient 

between the two centers induces anomalous low-troposphere southwesterly and southerly winds over the 

North Atlantic Ocean (Fig. 6) that transport warm and moist air from North Atlantic into the Arctic 

Ocean north of Eurasia, thus increasing surface air temperature and humidity and reducing sea ice 140 

concentration in the Arctic (Fig. 7). The higher moisture content in the Arctic surface air also facilitates 

the occurrence of water vapour and cloud radiative feedback process (Sedlar et al., 2011) during which 

increased downward longwave radiation (Fig. 7) enhances surface warming and sea ice melting. The 

anomalous high pressure produces subsidence and the adiabatic warming associated with the sinking air 

contributes to the sea ice loss (Ding et al., 2017) (Not shown). The opposite may occur in the region 145 

under the anomalous low pressure center. But the warm southwesterly winds over the northeastern 

Canada also favor the sea ice loss there.    

For Node 9, the SST composite is characterized by negative anomalies in both the Pacific and the 

Atlantic except for areas of the tropical Pacific and the west coast of North America (Fig.5). The two 

negative SST anomaly centers over the mid-latitude North Pacific induce positive local 150 

upper-troposphere vorticity anomalies (Hoskins and Karoly, 1981), which generate a wave train of zonal 

wave numbers two. There is positive phase AO in the Arctic (Fig.5). Anomalous northeasterly winds in 
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the North Atlantic Ocean induced by anomalous Icelandic low are unfavourable for warm air intrusion 

into the Arctic Ocean (Fig. 6), a result also indicated in a previous study (Kim et al., 2017). Despite the 

occurrences of anomalous southwesterly winds over the Barents Sea and southeasterly winds over the 155 

Sea of Okhotsk, the cold advection from anomalous cold sea water prevents the Arctic sea ice from 

melting. Meanwhile the cold advection also reduces water vapor content in the lower troposphere and the 

resulting smaller downward longwave radiation facilitates the occurrence of negative surface air 

temperature and positive Arctic sea ice anomalies north of Eurasia (Fig. 7). The northerly winds over the 

Beaufort Sea, northeastern Canada and Greenland Sea also contribute to the decrease in surface air 160 

temperature and increase in the sea ice concentration. 

The opposite patterns in Nodes 1 and 9 may be explained by the differences in the water vapor-radiation 

feedback process resulting from anomalous temperature and especially water vapour transport by 

anomalous atmospheric circulations associated with different patterns of SST anomalies over the North 

Pacific and Atlantic. The patterns of SST anomalies are nearly symmetric for the two nodes over the 165 

North Atlantic, but they are somewhat asymmetric over the North Pacific. For Node 1, there is one center 

of high SST over the central North Pacific, whereas Node 9 is associated with two centers of low SST: 

one over the Coast of Japan and another in central North Pacific. These differences in the SST anomaly 

patterns lead to different wave trains and high-latitude atmospheric circulations. 

The composites here are made based on the frequency time series of the two dominant SOM patterns, 170 

which is different from composites based simply on the original sea ice time series. With SOM, lower sea 

ice years were denoted by 2007-2013 and 2015-2016 while higher sea ice years are represented by 

1980-1982, 1986-1989, 1992, and 1996. With original sea ice time series, higher and lower sea ice 

periods are usually considered as before and after the late 1990s. The SOM-based composites allow for 

better depiction of atmospheric circulation patterns that have significant impact on sea ice trends.  175 

 

5 Conclusions 

We investigate the potential mechanisms for the autumn Arctic sea ice decline for the period 1979-2016 

using the SOM method. Our results show that a large portion of the autumn Arctic sea ice loss may be 

associated with the changes in the temperature and water vapour transport and the associated water 180 

vapour radiation feedback resulting from anomalous atmospheric circulations linked to SST anomalies 
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over the North Pacific and North Atlantic. This result provides further evidence that the mid-latitude SST 

anomalies play a vital role in the accelerated Arctic sea ice decline in recent decades (Ding et al., 2017; 

Yu et al., 2017). An important finding is that the opposite pattern of the Arctic sea ice anomalies during 

the early (positive) and later (negative) parts of the 1979-2016 period is not associated with opposite 185 

phase of an atmospheric circulation mode; but instead the change may be explained by two different 

atmospheric circulation patterns (AO and AD) associated with an asymmetry in the anomalous SST 

distributions over the North Pacific. The teleconnections between the Arctic sea ice variability and 

mid-latitude SST anomalies suggest that on a decadal or longer time scale it may be necessary to include 

the Arctic sea ice and mid-latitude SST interactions or feedbacks in any investigations of Arctic warming 190 

and sea ice decline and their potential influence on mid-latitude weather and climate, an area of active 

research in recent years (Barnes and Screen, 2015; Overland and Wang, 2015; Francis and Skific, 2015). 

Finally, the results here help highlight the large contributions from the decadal-scale natural climate 

variability to Arctic climate change, though further studies using coupled global atmosphere-ocean-sea 

ice models are necessary to fully understand the physical mechanisms.  195 
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Table 1. The 38-year (1979-2016) average of spatial correlations between the seasonal Arctic sea 

ice concentration and the corresponding SOM pattern for each year.  

 

SOM grids 2×2 2×3 2×4 3×3 3×4 3×5 4×4 4×5 

Correlation 
coefficients 

0.59 0.56 0.59 0.64 0.66 0.69 0.68 0.70 
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Figure captions 

Fig.1. The SOM patterns of anomalous autumn (September-November) Arctic sea ice concentration for a 

3×3 grid for the 1979-2016 period. The percentages at the top left of each panel indicate the frequency of 

occurrence of the pattern.  

Fig. 2. Occurrence time series for each SOM pattern in Fig. 1.  

Fig. 3. Trends in the anomalous autumn Arctic sea ice concentration explained by each SOM pattern 

(Units: yr-1).  

Fig. 4. Total (a), SOM-explained (b) and residual (c) trends (Units: yr-1) in the anomalous autumn Arctic 

sea ice concentration fields. Dots in (a) indicate above 90% confidence level.  

Fig. 5. Composites of anomalous sea surface temperature (°C) and 500-hPa geopotential height (gpm) for 

nodes 1 and 9. Dotted regions denote above 90% confidence level.  

Fig. 6. The same as Fig. 5, but for anomalous 850-hPa wind field. Shaded regions denote above 90% 

confidence level.  

Fig. 7. The same as Fig. 5, but for anomalous integrated atmospheric water vapor from surface to 750 hPa 

(g kg-1), accumulated surface downward longwave radiation (W m-2 × 105) and surface air temperature 

(°C). Dotted regions denote above 90% confidence level.  
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Figure1 The SOM patterns of the anomalous autumn (September-November) Arctic sea ice 
concentration for a 3×3 grid for the 1979-2016 period. The percentages at the top left of each panel 
indicate the frequency of occurrence of the pattern.  
 
 
 
 
 
 
 
 
 
 
 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-127
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 4 April 2018
c© Author(s) 2018. CC BY 4.0 License.



16 
 

 

 
 
Figure 2. Occurrence time series for each SOM pattern in Figure 1. 
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Figure 3. Trends in the anomalous autumn Arctic sea ice concentration explained by each SOM pattern 
(Units: yr-1). 
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Figure 4. Total (a), SOM-explained (b) and residual (c) trends (Units: yr-1) in the anomalous autumn 
Arctic sea ice concentration fields. Dots in (a) indicate above 95% confidence level. 
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Figure 5. Composites of anomalous sea surface temperature (°C) and 500-hPa geopotential height (gpm) 
for nodes 1 and 9. Dotted regions denote above 90% confidence level. 
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Figure 6. The same as Figure 5, but for anomalous 850 hPa wind field. Shaded regions denote above 90% 
confidence level. 
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Figure 7. The same as Figure 5, but for anomalous integrated atmospheric water vapor from surface to 
750 hPa (g kg-1), accumulated surface downward longwave radiation (105Wm-2), and surface air 
temperature (°C). Dotted regions denote above 90% confidence level. 
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